首 页  系概况  新闻公告  机构设置  学科建设  科学研究  师资力量  人才培养  校友园地  资源信息 
  中文 | English
师资力量
 教授 
 副教授 
 讲师 
 助教 
 兼职教授 
 曾经工作过的教师 
 离退休人员 
 高级实验师 
 工程师 
 高级工程师 
当前位置: 首页>>应用化学系>>师资力量>>教授>>正文

黄 英

   黄英 教授 博士生导师
   办公室:理学院B370
   办公室电话:029-88431636
   Email
yingh@nwpu.edu.cn
  专业特长:化学工艺、应用化学、材料学、化学工程

 

黄英,中共党员,西北工业大学教授,博士生导师,全国宝钢优秀教师奖获得者,中组部青年拔尖人才支持计划评审专家,陕西省教学名师。西安市黏结协会副理事长,《硅酸盐学报》、《航空学报》、《材料研究学报》、《材料科学与工艺》及《材料工程》审稿专家。《Nanoscale》、《ACS Applied Materials & Interfaces》、《Carbon》、《PhysicaB》等刊物审稿专家。陕西省精品课程(化工原理)负责人和陕西省特色专业––化学工程与工艺学科负责人、陕西省级教学团队应用化学教学团队负责人。

西北大学学士,西北工业大学材料学硕士,主讲《化工原理》、《化工原理实验》等本科生课程和开设《化工过程优化设计》研究生课程,曾获西北工业大学优秀研究生指导教师奖,指导的博士生与硕士生分别获得宝钢优秀学生特等奖(全校仅此两名),两次被评为西北工业大学本科教学最满意教师,获多项省、校优秀教学成果奖。主编教材6部,主持陕西省教学改革研究项目3项,主编十一五国家级立项教材与十五国防科工委立项教材各1部,主编工业和信息化部十二五规划教材一部,获陕西省优秀教学成果奖两项,主编的《化工设计》教材获陕西省优秀教材一等奖。 

一、主要科研获奖

1.英国皇家化学会“Top 1%高被引中国作者20172016

2. 陕西省科学技术二等奖环保型改性酚醛树脂基复合材料的研制2009

3.第二届陕西省创意设大赛三等奖铈掺杂纳米钡铁氧体薄膜2009

4.陕西省科学技术三等奖聚砜改性无污水高韧高绝缘热固性塑料的研制及工程应用2005

5.陕西省科学技术三等奖棉布(纤维)增强酚醛塑料及其滑轮的研制2004

6.国防科学技术委员会国防科学技术三等奖“××热固性塑料的研究及其工程应用2003

二、代表性教学成果

1.主编化工设计教材获陕西省优秀教材一等奖,2013.10

2.黄英(排名第一),等.化工专业创新人才培养体系改革的研究与实践.陕西省教学成果二

等奖,2012.1

3.陕西省教学名师称号,2010.9

4.宝钢优秀教师奖(宝字第200910159号),2009.11

5.陕西省精品课程化工原理负责人:黄英,2005.7

6.西北工业大学优秀博士论文指导教师,20172016

7.西北工业大学优秀硕士论文指导教师,20162015

8.西北工业大学优秀本科论文指导教师,20172016

近年来主持国家自然科学基金、国家863项目、军品配套项目8、省部级科学基金项目10项、国防横向课题多项。在国内外发表学术及教学论文200余篇,SCI索引百余篇,其中有ESI高被引论文6篇。先后从事纳米吸波材料、材料的表面改性、导电、导热高分子材料等多项研究工作。

以纳米材料设计及高分子材料的结构与性能的关系为基础,重点开展了以下工作:

1)在新物质、新功能材料研究方面,研究了特定功能纳米材料(包括石墨烯的功能化、纳米粉体、纳米薄膜、碳纳米管、磁性液体、纤维改性等)的设计与制备方法;

2开展新型电池材料及其电化学性能研究,包括锂离子电池正极、负极材料,锂硫电池正极材料,燃料电池催化剂等。

3)运用高分子的交联与固化理论及各种交联手段开展新型功能高分子新材料及其器件研究(包括柔性透明导电薄膜、新型溶致变色导电高聚物、导热材料等);

4)研究特定功能材料与光催化材料,研究其在水污染治理、空气净化等方面的应用,建立的有关新方法在信息存储、吸波、电磁屏蔽、锂离子电池材料、超电容材料、环境材料等方面取得了突破。

5研究高导热金属基、聚合物基复合材料,主要围绕提高材料的热导率、同时要求材料具有优良的力学性能方面开展研究工作。

两次入选英国皇家化学会Top 1%高被引中国作者榜单,获国防科工委科技进步奖1项,陕西省科学技术奖3项,西安市科学技术奖1项,第二届陕西省创意设计大赛奖1项,陕西省工业和信息化厅信息产业科技成果奖1项,陕西省国防科学技术工业委员会科技进步奖1项,获已授权国家发明专利20余项。 

三、 授权国家发明专利
1. 碳纤维增强氰酸酯基板材化学镀的表面粗化的蚀刻液及粗化方法,ZL 201300229802.52015.8
2.
用于碳纤维氰酸酯基复合材料化学镀底镍和电镀镍的镀液及其施镀方法,ZL 201210437006.62015.6
3.
锂电池石墨烯/锡酸锂复合材料的制备方法,ZL 201210437006.62015.4
4. 
锂离子电池用硫化锡/稀土金属负极材料的制备方法,ZL 201110456611.32015.3
5. 
一种微纳米榴莲状γ-Fe2O3粉体的制备方法,ZL 201310382594.22014.11
6. 
一种石墨烯/Ni0.8Zn0.2Ce0.06Fe1.94O4纳米吸波材料的制备方法,ZL 201310382909.32014.11
7. 
还原氧化石墨烯/Cu2O/Cu量子点三元吸波材料的制备方法,ZL 201310228100.52014.7
8. 
还原氧化石墨烯/Fe3O4/Ag纳米复合吸波材料的制备方法,ZL 201310229123.82014.7
9.
一种改性二氧化钛/竹炭复合材料及其制备方法,ZL 201210250146.22014.6
10 .
聚合物掺杂锡酸锂负极材料的制备方法,ZL 201110456611.32013.11
11.
锂电池碳掺杂锡酸锂负极材料的制备方法,ZL 201110284939.12013.8
12.
一种铈掺杂纳米锶铁氧体薄膜及其制备方法,ZL200910021807.22012
13.
镧掺杂纳米钡铁氧体薄膜及其制备方法,ZL200810151028.X2011
14.
化学镀导电玻璃纤维的前处理方法,ZL200710017812.72011
15.
一种铈掺杂纳米钡铁氧体薄膜的制备方法,ZL200810151029.42011
16. PBO
纤维复合材料的制备方法及其专用表面处理剂,ZL200910024005.72011
17. Ni-Fe-Sm-Co-P
镀液以及玻璃纤维Ni-Fe-Sm-Co-P合金的制备方法,ZL200910023696.92011
18.
玻璃纤维化学镀五元合金镀液及其制备方法,ZL200710017926.12011
19.
玻璃纤维化学镀Ni-Fe-La-P四元合金镀液及其制备方法,ZL200710017925.72010
20. Ni-Fe-Pr-P
镀液以及玻璃纤维Ni-Fe-Pr-P合金及其制备方,ZL200810150865.02010
21. Ni-Fe-Ce-P
镀液及其制备方法、玻璃纤维Ni-Fe-Ce-P合金的制备方法,ZL200810150867.X2010
22. Ni-Fe-Nd-P
镀液以及玻璃纤维Ni-Fe-Nd-P合金及其制备方法,ZL200810150866.52010
23.
一种聚苯胺纳米片层结构的制备方法,ZL200810150265.42010
24.
一种聚苯胺纳米线/纳米颗粒复合体系的制备方法,ZL200810150267.32010
25.
萘酚改性酚醛树脂及其制备方法,ZL200510096433.22010
26.
结构型阻燃塑料的制备方法,ZL200410026015.12007
27.
无污水排放酚醛树脂及其制备方法,ZL200410025829.32006
28.
无污水排放耐磨酚醛模塑料及其制备方法,ZL200410025831.02006
29.
无污水排放耐高温、绝缘酚醛树脂及其制备方法,ZL200410025827.42006
四、2014~2017发表的一区研究论文
1. Effect of pyrolysis temperature of 3D graphene/carbon nanotubes anode materials on yield of carbon nanotubes and their electrochemical properties for Na-ion batteries. Chemical Engineering Journal, 2017, 317:793–799
2. One-step hydrothermal synthesis of flaky attached hollow-sphere structure NiCo2S4 for electrochemical capacitor application. Chemical Engineering Journal, 2017, 317: 873–881
3. Synthesis and superior lithium storage performances of hybrid hollow urchin-like silicate constructed by nanotubes wrapped in reduced graphene oxides. Electrochimica Acta, 2017, 245:361–370
4. Fabricating three-dimensional hierarchical porous N-doped graphene by a tunable assembly method for interlayer assisted lithium-sulfur batteries. Chemical Engineering Journal, 2017, 327:855-867
5. Synthesis of ZnS quantum dots and CoFe2O4 nanoparticles co-loaded with graphene nanosheets as an efficient broad band EM wave absorber. Chemical Engineering Journal, 2017, 308: 214-221
6. Synthesis of magnetical nanoparticles decorated with reduced graphene oxide as an efficient broad band EM wave absorber, Journal of Alloys and Compounds, 2017, 692: 639-646.
7. Soft-template hydrothermal systhesis of nanostructured Copper(II) Tungstate cubes for Electrochemical Charge Storage Application. Electrochimica Acta, 2016
220156-163
8.  α-MoO3 nanorods coated with SnS2 nanosheets core-shell composite as high-performance anode materials of lithium ion batteries. Electrochimica Acta, 2016, 222: 956-964.
9. Insight into the electrochemical behavior of lithium-sulfur cells assisted by potassium hydroxide activated carbon black and polyaniline nanorods. Electrochimica Acta, 2016, 209:643-653
10
Construction of CuS Nanoflakes Vertically Aligned on Magnetically Decorated Graphene and Their Enhanced Microwave Absorption Properties, ACS Applied Materials & Interfaces, 2016, 8: 5536-5546.
11. Magnetic
graphene@PANI@porous TiO2 ternary composites for high-performance electromagnetic wave absorption. Journal of Materials Chemistry C, 2016, 4: 6362-6370
12. 3D architecture reduced graphene oxide-MoS2 composite: Preparation and excellent electromagnetic wave absorption performance. Composites part A-applied science and manufacturing, 2016, 90:424-432
13. Sandwich structures of
graphene@Fe3O4@PANI decorated with TiO2 nanosheets for enhanced electromagnetic wave absorption properties. Journal of Alloys and Compounds, 2016, 662: 63-68
14. FeNi3 nanoalloy decorated on 3D architecture composite of reduced graphene oxide/molybdenum disulfide giving excellent electromagnetic wave absorption properties. Journal of Alloys and Compounds, 2016, 689: 208-217.
15.Self-assembled flower-like NiFe2O4 decorated on 2D grapheme nanosheets composite and their excellent electrochemic performance as anode materials for LIBs. Journal of Alloys and Compound, 2016, 686: 905-913.
16.Self-assembled graphene/sulfur composite as high current discharge cathode for lithium-sulfur batteries. Electrochimica Acta, 2015, 163: 24-31
17. Cubic NiFe2O4 particles on graphene-polyaniline and their enhanced microwave absorption properties. Composites Science and Technology, 2015, 107: 54-60
18. Hierarchical composites of polyaniline nanorod arrays covalently-grafted on the surfaces of
graphene@Fe3O4@C with high microwave absorption performance.
Composites Science and Technology, 2015, 108: 1-8.
19.Influence of (RGO)/(ferrite) ratios and graphene reduction degree on microwave absorption properties of graphene composites, Journal of Alloys and Compounds, 2015, 644: 491-501.
20. Synthesis and microwave absorption enhancement of
graphene@Fe3O4@SiO2@NiO nanosheet hierarchical structures. Nanoscale.2014, 6: 3157-3164
21. Superparamagnetic Fe3O4 nanoparticles on graphene–polyaniline: Synthesis, characterization and their excellent electromagnetic absorption properties. Journal of Alloys and Compounds. 2014, 596:25-31.
22. Hollow Zn2SnO4 boxes wrapped with flexible graphene as anode materials for lithium batteries. Electrochimica Acta, 2014,120: 128-132
23. Preparation of hollow Zn2SnO4
boxes@C/graphene ternary composites with a triple buffering structure and their electrochemical performance for lithium-ion batteries. Electrochimica Acta, 2014, 147: 201-208
24. Superparamagnetic NiFe2O4 particles on poly(3,4-ethylenedioxythiophene)-graphene: Synthesis, characterization
and their excellent microwave absorption properties. Composites Science and Technology, 2014, 95: 107-11
25. Superparamagnetic Fe3O4 nanoparticles on graphene–polyaniline: Synthesis, characterization and their excellent electromagnetic absorption properties. Journal of Alloys and Compounds, 2014, 596: 25-31.
26. Synthesis, characterization and excellent electromagnetic wave absorption properties of graphene/poly (3,4-ethylenedioxythiophene) hybrid materials with Fe3O4 nanoparticles. Journal of Alloys and Compound, 2014, 617: 511-517

五、主编的国家级与省部级教材
1. 工业和信息化部“十二五”规划教材“化工过程节能与优化设计”,西北工业大学出版社,2017
2.
普通高等教育“十一五”国家级规划教材“化工设计”,科学出版社,2011.6
3.
普通高等教育规划教材“化工过程开发与设计”,化学工业出版社,2008.3
4.
国防科工委“十五”规划教材“化工过程设计”,西北工业大学出版社,2005.4 

 

西北工业大学理学院应用化学系 办公室电话:029-88431672 西北工业大学版权所有